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1. INTRODUCTION

Let C(X) denote the set of continuous real valued functions on a locally
compact Hausdorff space X. In a recent paper [3] A. K. Cline studied
Lipschitz conditions on the best Chebyshev approximation operator. There
is an oversight in the proof in [3] of the following interesting result:

CLINE'S THEOREM. Let X be a finite point set and let M be a Haar subspace
of C(X). Then there is a constant K (depending only on X and M) such that for
any f and g in C(X), the best approximations (from M) to f and g, P(f) and
P( g), respectively, satisfy

Ii P(f) - P(g)il ~ K ilf - gil· (I)

The proof given in [3] depends upon the assertion that the strong unicity
constant y(f) is continuous. This is false even when X is finite, as we will
show later on; however, there are some continuity-like properties of y(f).
In this note, we first give a correct proof of Cline's Theorem, and then discuss
the continuity properties of y( f).

2. PRELIMINARIES

Let M denote a finite dimensional Haar subspace of C(X). The cases of
most interest are when X is finite, and when X = [0, 1]. Let Ilfll denote
the Chebyshev (uniform) norm of f on X and let P(f) denote the best
approximate toffrom M.
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DEFINITION. A function 7T E M is said to be a strongly unique best
approximate to a given function/in C(X) if there exists a real number r > 0
such that

Ii/ - m Ii ;;?: II/ - 7T II + r II m - 7T II, for all mE M.

Let y(f) be the largest such r.
D. J. Newman and H. S. Shapiro [4] introduced the concept of strong

uniqueness and proved that the best approximate to a function / in C(X)
from a Haar subspace is strongly unique.

A result of Freud [2, p. 82] states that for M Haar, the best approximation
operator P satisfies at each point a Lipschitz condition, i.e., if/E C(X), then
there exists a constant K such that for any g E C(X), Eq. (1) holds where
K = 2(y(f»-I. The paper by Cline makes a study of Eq. (1).

Let SCM) = {m E M: Ii m II = I}. The strong Kolmogorov criterion [1]
characterizing strongly unique best approximates states that

y(f) = inf max [f(x) - P(f)(x)] Ilf - P(f)11-1 m(x), (2)
mES(M) xEE(f)

where E(F) = {x EX: I f(x) - P(f)(x) I = Ilf - P(f)jl}.

3. RESULTS

We give a corrected proof of Cline's Theorem.

Proof We show that

"I = fEi~\) y(f)

satisfies "I > O. Therefore, for any f, g E C(X),

II P(f) - P(g)11 ::s; 2"1-1 II/ - gil·

To demonstrate that "I > 0, we show that there are only finitely many
values which Y(f) can assume, none of which can be zero.

Let g be in C(X) and have the strongly unique best approximation peg).
Then letting gl = (g - peg»~ II g - P(g)II-1 we have P(gl) = 0 and
II gIll = 1. Also by Proposition 1 in [1], y(gl) = y(g). Therefore without
loss of generality we assume that II g II = 1 and peg) = O. Since E(g) has at
least one point, E(g) is one of at most L~=1 (~) sets, where N is the number of
points in X. If E(g) has (~) points 1 ::s; r ::s; N, then g = ±l at the points
in E(g) and g was defined in one of at most exp(~) log 2 ways on E(g).
According to the strong Kolmogorov criterion, y(g) is determined by the
values g assumes on E(g). Therefore y(g) can have at most finitely many
values.
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We now examine the continuity properties of y(f), both for X = [0, 1]
and for X finite and find that in general, y(f) can be badly discontinuous.
As observed in [2], we have 0 < y(f) ~ 1. Let <I, x) denote the subspace
of qo, I] spanned by I and x. Now y(f) might be discontinuous on M and
continuous off M (for a similar result see Theorem 3). The following result
shows that in general y(f) need not be continuous off M.

THEOREM 1. Let X = [0, I] and M = 0, x). Then given 0 < () < I
and E > 0, there exist lunctions I and g in C[O, I] such that I¢: M and g ¢: M
and

III-gil < E and y(f) - y(g) > ().

Proof Defineln(x) in C[O, I] for n > 5 by

\ 1
Inlx ) = I-I

if x = 0, liS, 1/2, I
if x = lin, 1/4, I - (lIn)

and/n is linear in between these points. Now

Il/n II = I, P(fn) = 0 and E(fn) = {O, lin, liS, 1/4, 1/2, 1 - (lIn), I}.

Let m E M satisfy II m II = 1. Then Im(x)I = I at x = 0 or at x = 1.
Checking each of the four possibilities separately by using (2) we see that
y(fn) ?' I - (2In). For instance, if m(O) = -I, and m(x) = cx - I, then
In(Iln) m(lln) = I I - (cln) I ?' I - (2In). Now define gn E qo, I] by

lliX) if x¢: [(l/4) - (I/40n), (l/4) + (I/8n)]
gn(x) = V [I - (lIn) - (n - 2)/(4n2), I - (lIn) + (I/2n2)]

- I + (lin) otherwise.

Then

and E(gn) = {O, lin, liS, 1/2, I}.

If m(x) = -x, then

max gn(x) m(x) = lin.
xeE(gn)

Thus y(gn) ~ lin and Il/n - gn II = lin.

EXAMPLE 1. To see that y(f) need not be continuous when X is finite, let
X = {O, t, l, t, t, t 1},letf(x) = 16(X) as defined above, and let M = <I, x).
As above for n = 1,2,... , let gn(x) = f(x) for all x except! and! where
gn(x) = - I + (lin). Then y(f) ?' i and y(gn) ~ t. Thus {gn} converges
uniformly to I but limn~oo y(gn) ~ t.
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Although y(f) is not in general continuous, we see in the next two results
that y has some characteristics of continuity. At the Regional Conference
on the Theory of Best Approximation and Functional Analysis held at
Kent State University from June 11 to June 15,1973, R. R. Phelps commented
that y is an upper semicontinuous function. Here is a proof of that result.
The proof does not depend on M being a Haar set. Thus for any finite
dimensional subspace M, y is upper semicontinuous on the subspace of C(X),
where it is defined.

THEOREM 2 (R. R. Phelps). The strong unicity constant y(f) is an upper
semicontinuous function.

Proof It must be shown that if a sequence {gn} converges uniformly to f,
then

Assume to the contrary that there is a sequence {gn} converging to f and an
E > 0 such that y(gn) > y(f) + E for all n. Now

for all mE M.

Fix m E M. Then

II gn - m II ~ II gn - P(gn)11 + (y(f) + E) II P(gn) - mil

and letting n -+ CIJ we find

Ilf - m II ~ Ilf - P(f)11 + (y(f) + E) II P(f) - mil

which holds now for any m in M and this contradicts the definition of y(f).
Observe that Theorem 1 depends on E(fn) and E(gn) not being "near."

For a measure of nearness between any two subsets A and B of the metric
space (X, p) we use

dCA, B) = sup inf p(x, y).
YEB xcA

Of course this is not a distance since dCA, B) need not equal deB, A). But
dCA, B) does measure the "denseness" of A in B. This measure of contiguity
permits one to recover some aspects of continuity in the behavior of y(f)
off M, but not in general on M.

THEOREM 3. Let M be a Haar subspace of C(X) where X is a compact
metric space. Let {fn} be a sequence in C(X) converging uniformly to f where
I¢ M. Assume that limn~<X) d(E(fn), E(f» = O. Then

lim y(fn) = y(f).
n-"'VXJ
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Proof For ease of writing we give the prooffor X = [0, 1] with the usual
metric. Since11= M, we can assume without loss of generality that In 1= M for
all n. Also since (fn - P(fn))llin - P(fn)II-1converges to U - P(f))111- P(f)11-1

we may assume without loss of generality (by Proposition 1 of [l]) that
Il/n II = III11 = 1 and PUn) = P(f) = °for each n. Let E > °be given.
By Theorem 2, it suffices to show that there exists an N such that y(f) ~
y(fn) + E for all n > N. Now SCM) is uniformly equicontinuous on X [4].
Let 0 > °be such that [ x - Y I < 0 implies I f(x) - f(Y)1 < E/5 and also
I m(x) - m(y)] < E/5 for all mE SCM). Let N be such that if n > N, then
Il/n - III < E/5 and d(EUn), E(f)) < o. Fix n > N. Then there exists an
m n E SCM) such that

Thus for a fixed m1(x) E SCM)

Given x' E E(f), there exists an x n' in E(fn) such that ] x n' - x' I < o.
Thus

I f(x') m1(x') - InCxn') mn(xn') I

~ I f(x') m1(x') - f(xn') m1(x')1 + If(xn') m1(x') - In(xn') m1(x')1

+ I/n(xn') m1(x') - In(xn') mn(xn') I

~ (2E/5) + Il/n III m1(x') - mn(xn')1

~ 4E/5.

Thus y(f) - y(fn) ~ E and we are done.
In Theorem 3, if IE M and if In E M for all n, then y(fn) = y(f) = 1

for all n. But in general we see next that the conclusion does not follow in
Theorem 3 ifI E M.

EXAMPLE 2. Let M be the subspace (I, x) of C[O, 1]. Define In(x) in
C[O, 1] by

_ \ lin
In(x) - I-lin

if x = 0, 1/4n, 1/2n
if x = 1/3n, lin, 1
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andfn is linear inbetween these points. Then Ilfn II = lin and P(fn) = O. Thus
{fn} converges uniformly to zero and y(O) = I. But y(fn) ~ (2n2)-1. Indeed,
let m(x) = x, then

However limn -+oo d(E(fn), E(j)) = 0 since [lin, I] C E(fn).
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